WEST BENGAL STATE COUNCIL OF TECHNICAL EDUCATION

TEACHING AND EXAMINATION SCHEME FOR DIPLOMA COURSES

COURSE NAME: ELECTRICAL ENGINEERING (INDUSTRIAL CONTROL)

COURSE CODE : *EEIC* DURATION OF COURSE : 6 SEMESTER

SEMESTER: SIXTH SEMESTER

	SUBJECT	PI	ERIO	DS			EVALUA	ATION SCHEME				S
Sl. No.	THEORY		Т	D	SESSIONAL EXAM			DOD	PR	PR	CAL RKS	EDI
		L	I	P	ТА	СТ	TOTAL	ESE	(INT.)	(EXT.)	TOT MAI	CF
1	Industrial Control - II	04			10	20	30	70			100	3
2	Electrical Installation, Maintenance & Safety	04	10 20 30		70			100	3			
3	Industrial Control - III	04	02	04	10	20	30	70	50	50	200	5
4	Industrial Management	03			10	20	20 30				100	3
5	<i>Elective – II</i> (Any One) 1) Control of Electrical Machines 2) Industrial Automation 3) Computer Hardware & Networking	03		02	10	20	30	70	25	25	150	4
6	Industrial Project			04					50	50	100	2
7	Professional Practices - IV			03					50		50	2
8	General Viva Voce								100		100	2
	TOTAL	18	02	13	50	100	150	350	275	125	900	24

STUDENT CONTACT HOURS PER WEEK: 33 HRS THEORY AND PRACTICAL PERIODS OF 60 MINUTES EACH

#, External Assessment @, Internal Assessment ESE - End Semester Exam.

ABBREVIATIONS: CT- Class Test, TA - Teachers Assessment, L - Lecture, T - Tutorial, PR (INT.) – Practical (Internal) PR(EXT.)- Practical(External)

TA: Attendance & surprise quizzes = 6 marks. Assignment & group discussion = 4 marks. *Total Marks : 900*

Minimum passing for sessional marks is 40%, and for theory subject 40%.

WBSCTE SYLLABUS D	DIPLOMA IN ELECTRICAL ENGINEERING (INDUTRIAL CONTROL)					
Name of the Course: DIPLOMA IN ELECTRICAL EN	GINEERING (INDUSTRIAL CONTROL)					
Subject : INDUSTRIAL CONTROL-II						
Course Code: EEIC/S6/IC-II	Semester: <i>SIXTH</i>					
Duration: ONE SEMESTER	Maximum Marks: 100					
Teaching Scheme	Examination Scheme					
Theory : 4 hrs./week	Mid Semester Exam.: 20 Marks					
Tutorial: hrs./week	Attendance, Assignment & interaction: 10 Marks					
Practical: hrs./week	End Semester Exam.: 70 Marks					
Credit: 3	Practical: NIL					

Aim:

SI. No.	
1.	To get knowledge about safety and precautions.
2.	To know about various control systems and control equipments.

Objective:

SI. No.	The student will be able to know :
1.	Various control equipments
2.	Various control circuits
3.	Various driving systems

Pre-Requisite:

51. NO.		
1.	Knowledge of various control processes and electrical control equipments.	

DETAILED CONTENTS

UNIT	CONTENTS	HOURS	MARKS
1	1. Electric Drives: (12)	16	20
	(i) Definition of Electric drives, Block diagram explanation of		
	conventional and Modern electric drives, Advantages of electric		
	drive.		
	 (ii) Types of electric drive - Group, Individual and Multi-motor types and their applications. 		
	(iii) One quadrant, Two quadrant and Four quadrant electric drive with their applications.		
	(iv) Constant torque and constant power control of electric drive and their use.		
	(v) Characteristics of different mechanical loads (Variation of torque/power with respect to speed and time only).		
	(vi) Types of motors used in electric drive and their relative merits and demerits.		
	(vii) Use of flywheels for fluctuating load (Only Physical Concept).		
	(viii) Determination of motor rating for continuous, short time and intermittent duty (Constant speed application only), Simple Numerical Problems.		
	(ix) Types of enclosure and their use.		
	(x) Necessity of mechanical power transfer; Methods of power transfer by devices like belt drive, pulley drive and gear drive with their field of applications.		
	 (xi) Criteria for the selection of motors for particular loads; selection of motors for general workshop, crane and lift, textile mill, paper mill, steel mill and mine winders, printing press. (xii) Specification of commonly used motors 		
	(All) Specification of commonly used motors.		

WBSCT	E SYLLABUS DIPLOMA IN ELECTRICAL ENGINEERING (I	(INDUTRIAL CONTROL)		
UNIT	CONTENTS	HOURS	MARKS	
WBSCT UNIT 2	E SYLLABUS DIPLOMA IN ELECTRICAL ENGINEERING (I CONTENTS 2. Electric Traction:(13) 2.1. Types of Locomotives. 2.2 Electric Locomotive: Power Circuit Equipments and Auxiliary Circuit Equipments 2.3.1. Equipments of Electric Locomotive: Power Circuit Equipments and Auxiliary Circuit Equipments 2.3.2. Systems of Supplying Power in Electric Traction: Overhead System, Third Rail or Conductor Rail System. 2.3.3. Equipments in Power Circuit and their Functions: Power Circuit Diagram of AC Locomotive. 2.3.4. Different current collector devices. 2.3.5. Constituents of Supply System: Substations, Feeding Posts, Feeding and Sectioning Arrangements, Neutral section. 2.3.6. List of Major Equipments at Substation 2.3.7. Location and spacing of substation. 2.3.8. Overhead electrification. 2.1. Motor used in traction - D.C. & A.C. motors with their performance & characteristics. 2.2. Speed Time curve, Average & Schedule Speed 2.3. Tractive Effort: Simple problems related to tractive effort and power requirements. Mechanism of Train mopvement. 2.4. Speed control of DC traction	NDUTRIAL CO HOURS 24	<u>MARKS</u> 20	
3	 3. Refrigeration and air conditioning: (10) (i) Concept of refrigeration and air conditioning. (ii) Brief description of vapour compression refrigeration cycle. (iii) Description of electrical circuit used in (a) Refrigerator, (b) Air conditioner, and (c) Water cooler. 	7	10	
		10	10	
4	 4. INDUSTRIAL CONTROL CIRCUITS: (8) (i) Heater control (ii) Compressor motor control (iii) Skip hoist control (iv) Walking beam (v) Battery operated truck (vi) Conveyor system control (vii) Lift circuit 	10	12	
5	5. A.C. CONTROL CIRCUITS: (5)	7	8	
	 (i) Sequence starting of motors (ii) Starting of multispeed squirrel cage motor (iii) Over-load protection of motors (iv) Single phase protection (v) Over-temperature protection 			
	TOTAL	64	70	

Text Books:

Name of Authors	Title of the Book	Name of the Publisher	

EXAMINATION SCHEME (THEORITICAL)

		ONE OR TWO SENTENCE ANSWER QUESTIONS			SUBJECTIVE QUESTIONS					
GROUP	UNIT	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS	
А	1, 2,	14	TWENTY	ONE	ONE 12	1X20	FIVE	FIVE, TAKING AT LEAST TWO	TEN	10 X 5
В	3,4,5	9	IWENIY OF	ONE	= 20	FOUR	FROM EACH GROUP	I EIN	= 50	

Name of the Course: **DIPLOMA IN ELECTRICAL ENGINEERING (INDUSTRIAL CONTROL)** Subject : **Electrical Installation , Maintenance , Testing**

subject . Lieth real instantion , Francenance , Testing					
Course Code: EEIC/S6/EIMT	Semester: <i>SIXTH</i>				
Duration: ONE SEMESTER	Maximum Marks: 100				
Teaching Scheme	Examination Scheme				
Theory: 4 hrs./week	Mid Semester Exam.: 20 Marks				
Tutorial: hrs./week	Attendance, Assignment & interaction: 10 Marks				
Practical: hrs./week	End Semester Exam.: 70 Marks				
Credit: 3	Practical: NIL				

Aim:

- SI. No.
 - 1. This is technology level subject with application in Industry, commercial, public utility departments such as PWD, Electricity Board etc.
 - 2. After studying this subject student will be able to inspect, test, install & commission electrical machines as per IS .

Objective:

SI. No.	The student will be able to:
1.	 Know safety measures & state safety precautions.
2.	 Test single phase, three phase transformer, DC & AC machine as per IS.
3.	 Identify / Locate common troubles in electrical machines & switch gear.
4.	 Plan & carry out routine & preventive maintenance.
5.	• Install LV switchgear & maintain it.
6.	 Ascertain the condition of insulation & varnishing if necessary.
7.	 Identify faults & measures to repair faults.

Pre-Requisite:

SI. No.		
		1

1. Knowledge of electrical equipments

Contents (Theory)

Unit	Contents (Theory)	Hrs./Unit	Marks
1	Safety & Prevention of Accidents:	5	5
	1.1. Definition of terminology used in safety		
	1.2.I.E. Act & statutory regulations for safety of persons & equipments working with electrical installation		
	1.3. Dos & don'ts for substation operators as listed in IS.		
	1.4. Meaning & causes of electrical accidents factors on which severity of shock depends,		
	1.5. Procedure for rescuing the person who has received an electric shock, methods of providing artificial respiration,		
	1.6. Precautions to be taken to avoid fire due to electrical reasons,		
	operation of fire extinguishers		
2	General Introduction:	5	5
	2.1. Objectives of testing significance of I.S.S. concept of tolerance, routine		
	tests, type tests, special tests.		
	2.2. Methods of testing a) Direct, b) Indirect, c) Regenerative.		
	2.3. Classification and need of maintenance		
	2.4. Advantages of preventive maintenance, procedure for developing		
	preventive maintenance schedule,		
	2.5. Factors affecting preventive maintenance schedule.		
	2.6. Introduction to total productive maintenance.		
3	Testing & maintenance of rotating machines	10	10
	3.1. Type tests, routine tests & special tests of 1 & 3 phase Induction		
	motors,		
	3.2. Routine, Preventive, & breakdown maintenance of 1 & 3 phase		

WBSC	SCTE SYLLABUS DIPLOMA IN ELECTRICAL ENGINEERING (INDUTRIAL CONTRO					
Unit	Contents (Theory)	Hrs./Unit	Marks			
	Induction motors as per IS 9001:1992					
	3.3. Parallel operation of alternators, Maintenance schedule of alternators					
	& synchronous machines as per IS 4884-1968					
	3.4. Brake test on DC Series motor.					
4	Testing & maintenance of Transformers:	10	10			
	4.1. Listing type test, routine test & special test as per I.S. 2026-1981					
	4.2. Procedure for conducting following tests:					
	Impedance voltage, load losses, Insulation resistance, Induced over					
	voltage withstand test, Impulse voltage withstand test, Temperature					
	rise test of oil & winding, Different methods of determining temp rise-					
	back to back test, open delta (delta – delta) test.					
	4.3. Preventive maintenance & routine maintenance of distribution					
	transformer as per I.S. 10028(part III): 1981					
5	Testina & maintenance of Insulation:	8	10			
-	5.1. Classification of insulating materials as per I.S. 8504(part III) 1994.	-				
	5.2. Factors affecting life of insulating materials.					
	5.3. Methods of measuring temperature of internal parts of windings/					
	machines & applying the correction factor when the machine is hot.					
	5.4. Properties of good transformer oil. List the agents which contaminates					
	the insulating oil.					
	5.5. Understand the procedure of following tests on oil as per LS. 1692-					
	1978					
	a) acidity test b) sludge test c) crackle test d) flash point test.					
	5.6. Filtration of insulating oil					
	5.7. Protection of electrical insulation during the period of inactivity.					
	5.8. Methods of cleaning the insulation covered with loose, dry dust, sticky					
	dirt. & oily viscous films, procedure for cleaning washing & drying of					
	insulation & revarnishing.					
	5.9. Methods of internal heating & vacuum impregnation.					
6	Trouble shooting of Electrical Machines & Switch gear:	8	10			
-	6.1. Significance of trouble shooting of various electrical machines and	-				
	describes the procedure for the same.					
	6.2. Various types of faults (mechanical, electrical & magnetic) in electrical					
	machines and reason for their occurrence.					
	6.3. Use of following tools: Bearing puller, Filler gauge, dial indicator, spirit					
	level, growler.					
	6.4. Trouble shooting charts for Single & 3-phase induction motor, Single &					
	3- phase transformer.					
	6.5. List the common troubles in HV and LV switchgear, contactors &					
	batteries.					
7	Installation:	12	10			
	7.1. Inspection procedure of Machine Installation.					
	7.2. Factors involved in designing the machine foundation,					
	7.3. Requirement of different dimension of foundation for static & rotating					
	machines procedure for levelling & alignment of two shafts of directly					
	& indirectly coupled drives, effects of misalignment.					
	7.4. Installation of rotating machines as per I.S. 900-1992.					
	7.5. Use of various devices & tools in loading & unloading, lifting, carrying					
	heavy equipment.					
	7.6. Method of drying out of Machines.					
	7.7. Classification of transmission tower					
	7.8. Installation of Transmission Tower (From foundation to complete					
	erection).					
8	Earthing:	6	10			
	8.1. Introduction & importance.					
	8.2. Step potential & Touch potential.					
	8.3. Factors affecting Earth Resistance.					

WBSCI	TE SYLLABUS DIPLOMA IN ELECTRICAL ENGINEER	ING (IN	DUTRIAL CO	NTROL)
Unit	Contents (Theory)	Hrs./Unit	Marks	
	8.4. Methods of earthing			
	8.5. Substation and Transmission Tower earthing			
	8.6. Transformer Neutral Earthing.			
	Т	'OTAL	64	70
Tovt	Books			

Name of Authors	Title of the Book	Name of the Publisher
Tarlok Sibgh	Installation, Commissioning & Maintenance of Electrical Equipment	S.K.Kataria & Sons
B.V.S.Rao	Operatin & Maintenance of Electrical Machines Vol I & II	Media Promoters & Publisher Ltd. Mumbai

EXAMINATION SCHEME (THEORITICAL)

		ONE OR TWO SENTENCE ANSWER QUESTIONS					SUBJECTIVE QUESTIONS D BE SET TO BE ANSWERED MARKS PER QUESTION TOTAL MARKS IVE FIVE, TAKING AT LEAST TWO 10 X 5		
GROUP	UNIT	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS
А	1, 2, 3,4,5	12	TWENTY	ONE	1X20	FIVE	FIVE, TAKING AT LEAST TWO	TEN	10 X 5
В	6,7,8	11		ONE	= 20	FOUR	FROM EACH GROUP	I EIN	= 50

Note: Paper-setter should take into account the marks which have been allotted in each unit and set the paper accordingly so that all units get the importance as allotted.

Name of the Course: *DIPLOMA IN ELECTRICAL ENGINEERING (INDUSTRIAL CONTROL)* Subject : **INDUSTRIAL CONTROL-III**

Subject . INDOSTRIAL CONTROL-III					
Course Code: EEIC/S6/IC-III	Semester: <i>SIXTH</i>				
Duration: ONE SEMESTER	Maximum Marks: 200				
Teaching Scheme	Examination Scheme				
Theory: 4 hrs./week	Mid Semester Exam.: 20 Marks				
Tutorial: 2 hrs./week	Attendance, Assignment & interaction: 10 Marks				
Practical: 4 hrs./week	End Semester Exam.: 70 Marks				
Credit : 5	Practical: 100				

Aim:

SI. No.	
1.	To get knowledge about Programmable Logic Controller (PLC).
2.	To get knowledge about Discrete input / Output module.
3.	To know about <u>Distributed Control System (DCS)</u> .
	To get knowledge about Supervisory Control & Data Acquisition (SCADA).

Objective:

SI. No.	The student will be able to know :
1.	Various control Logics & their hardwares.
2.	How to design control circuits & ladder diagrams.
3.	How to make programme for various logic controllers.

Pre-Requisite:

SI. No.	
1.	Knowledge of various control processes and electrical control equipments.

UNIT	CONTENTS	HOURS	MARKS
1	 Introduction to Programmable Logic Controller (10) PLC evolution, Overview, Functions & Features. Typical areas of Application. PLC vs Personal Computers, PLC vs Dedicated Controllers, Hardwire control system compared with PLC system, Advantages of PLCs, Criteria for selection of suitable PLC. Block diagram of PLC, Principle of operation, CPU, memory organization, I/O modules, Input types – Logic, Analog – pulse train, Expansion modules, Power supplies to PLC, Modular PLCs - list of various PLCs available 	10	15
2	Input Modules (5) Discrete input module, AC input module, DC input module, sinking and sourcing, sensor input, Special input modules – Sensors – limit switch, reed switch, photo electric sensor, inductive proximity sensor – Input Addressing scheme in important commercial PLCs.	5	5
3	Output modules (5) Discrete output module – TTL output module – Relay output – Isolated output module – surge suppression in output – Analog outputs – open collector output. Output Addressing scheme in important commercial PLCs.	5	5
4	 PLC Hardwares (6) Backplane & Rack, • Power Supply Module, Programmable Controller Network Interface Modules, Serial Communication Interface, Memory modules, Proprietary Cables & accessories, Introduction to Remote Input / outputs Redundancy - overview 	6	6

WBSCTE	SYLLABUS DIPLOMA IN ELECTRICAL ENGINEERING	TE SYLLABUS DIPLOMA IN ELECTRICAL ENGINEERING (INDUTRIAL CONTROL)				
5	PLC Programming (18)	18	17			
	Symbols used – relays and logic functions – OR, AND, Comparator;					
	Programming Devices – programming methods – STL and CSF, FBD					
	and Ladder methods – simple instructions – Programming NC and NO					
	contacts. EXAMINE ON and EXAMINE OFF instructions - online, offline					
	methods- Latch and Unlatch outputs - pulse edge evaluation - timer					
	instructions – on-delay and off-delay timer. Counter instructions – UP /					
	DOWN counters – Timer and Counter applications. Program control					
	instructions – Data manipulating instructions – Math instructions.					
	converting simple relay ladder diagramm into PLC relay ladder					
	diagram – PID and PWM functions. Sample PLC implementations for					
	Automatic Star-Delta Starter and 4 - floor Lift system.					
6	Distributed Control System (DCS) (5)	5	5			
	Concept of DCS, Data Acquisition Basics, Data Control Basics					
	DCS Architecture, Advantages & Limitations					
	Overview of configuration & programming					
7	Supervisory Control & Data Acquisition (SCADA) (10)	10	12			
	• Introduction to SCADA					
	• SCADA Architecture, Communication table for signal exchange,					
	Introduction to communication protocols, Interfacing with PLC,					
	Operating Screens, Application programming, Simulation / RUN time.					
	Networking Levels of industrial control – types of networking –					
	network communications – principles – transmission media – Field Bus					
	– introduction, concepts, international field bus standards –					
	Networking with TCP / IP Protocol – Network architecture – Physical					
	addressing – LAN technologies – Ethernet – Token Ring – Sub-netting –					
	subnet mask – transport layer – ports – sockets network services – file					
	transfer protocol.					
8	Interface & bus standard: (5)	5	5			
	Interface and backplane bus standards for instrumentation systems.					
	Field bus: Introduction, concept. HART protocol: Method of operation,					
	structure, operating conditions and applications. Smart transmitters,					
	IEEE 1451 protocol, smart valves and smart actuators.		=			
		64	70			

Laboratory Experiments (Any ten experiments)

- 1. Study of Various types of PLCs
- 2. Experiment to Control Stepper Motor using PLC
- 3. Experiment to Simulate Two Way Switch using PLC
- 4. Experiment to Control Motor from 3 different Position (1 ON & 2 OFF)
- 5. Experiment to toggle the functioning of two motors using PLC timer
- 6. Experiment to switch a pair of motors automatically in different sequence using PLC.
- 7. Experiment to control the level of water in a reservoir.
- 8. Security Alarm System Controlling
- 9. Experiment to Control the direction of rotation of a motor in Forward & Reverse direction using PLC
- 10. Developing Traffic Signal Control system using PLC
- 11. Controlling Solenoid valve using PLC
- 12. Controlling Pressure using PLC
- 13. Controlling Temperature using PLC
- 14. Controlling Flow of liquid using PLC

Text Books:

- 2. Distributed Control Systems, Lukcas M.P Van Nostrand Reinhold Co., New York, 1986.
- 3. Programmable Logic Controllers, Frank D. Petruzella Second edition, McGraw Hill,

^{1.} Programmable Logic Controllers -Principles and Applications, F John. W .Webb Ronald A Reis, Fourth edition, Prentice Hall Inc., New Jersey, 1998.

EXAMINATION SCHEME (THEORITICAL)

		ON	IE OR TWO SE QUES	NTENCE ANS TIONS	WER		SUBJECTIVE QUESTIONS TO BE SET TO BE ANSWERED MARKS PER QUESTION TOTAL MARKS THREE FIVE, TAKING AT LEAST ONE FROM EACH 10 X 5 TEN 10 X 5 = 50		
GROUP	UNIT	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS
Α	1, 2, 3,	10				THREE	FIVE, TAKING AT		
В	4,5	6	TWENTY	ONE	1X20 = 20	THREE	LEAST ONE FROM EACH	TEN	10 X 5 = 50
С	6,7,8	7				THREE	GROUP		

EXAMINATION SCHEME (SESSIONAL)

- 1. **Continuous Internal Assessment of 50 marks** is to be carried out by the teachers throughout the Sixth Semester. **Distribution of marks: Performance of Job 30, Laboratory Notebook- 20.**
- 2. External Assessment of 50 marks shall be held at the end of the Sixth Semester on the entire Sessional syllabus. One Drawing sheet from any one of the above is to be drawn. **Distribution of marks: On spot job 30, Viva-voce -20.**

Name of the Course: DIPLOMA IN ELECTRICAL ENGINEERING (INDUSTRIAL CONTROL)					
Subject : <i>Industrial Management</i>					
Course Code: EEIC/S6/IM	Semester: <i>SIXTH</i>				
Duration: ONE SEMESTER Maximum Marks: 100					
Teaching Scheme	Examination Scheme				
Theory: 3 hrs./week	Mid Semester Exam.: 20 Marks				
Tutorial: hrs./week	Attendance, Assignment & interaction: 10 Marks				
Practical: hrs./week	End Semester Exam.: 70 Marks				
Credit: 3	Practical: NIL				

Aim:

SI. No.

1. To study the techniques for improvement in productivity of the people and equipment, to plan the production schedule accordingly organize material supply for the manufacturing activities. To minimize the direct and indirect cost by optimizing the use of resources available. To learn accounting process, inventory control and process planning. Modern manufacturing system employ techniques such as JIT, TPM, FMS, 5'S', kaizen which should be known to the technician.

Objective:

SI. No.	The student will able to
1.	Familiarize environment in the world of work
2.	Explain the importance of management process in Business.
3.	Identify various components of management
4.	Describe Role & Responsibilities of a Technician in an Organizational Structure.
5.	Apply various rules and regulations concerned with Business & Social Responsibilities
	of the Technician

Pre-Requisite: NIL

Contents (Theory)

Unit	Contents (Theory)	Hrs./Unit
	GROUP A	
1	Overview Of Business	04
	1.1. Types of Business	
	Service	
	Manufacturing	
	• T rade	
	1.2. Industrial sectors	

WBSCTE S	SYLLABUS DIPLOMA IN ELECTRICAL ENGINEERING (INDUTRIA)	L CONTROL)
Unit	Contents (Theory)	Hrs./Unit
	Introduction to	
	Engineering industry	
	Process industry	
	Textile industry	
	Chemical industry	
	Agro industry	
	1.3 Globalization	
	Introduction	
	Advantages & disadvantages w.r.t. India	
	1.4 Intellectual Property Rights (I.P.R.)	
2	Management Process	05
	2.1 What is Management?	
	Evolution	
	Various definitions	
	Concept of management	
	Levels of management	
	Administration & management	
	Scientific management by F.W.Taylor	
	2.2 Principles of Management (14 principles of Henry Fayol)	
	2.3 Functions of Management Planning	
	Organizing	
	• Directing	
	• Controlling	
	2.4 Social responsibility and Environmental dimension of management]	
	GROUP - B	
3	Organizational Management	6
	3.1 Organization :-	
	Definition	
	Steps in organization	
	3.2 Types of organization	
	1. Line	
	2. Line & staff	
	3. Functional	
	4. Project	
	3.3 Departmentation	
	Centralized & Decentralized	
	Authority & Responsibility	
	• Span of control	
	Dropriotorship	
	Propriotership Destroarchip	
	Partnership Joint stock	
	• Joint stock	
	Co-operative Society	
1	GOVI. Sector	10
т	4 1 Personnel Management	10
	• Introduction	
	Definition	
	Objectives	
	Functions	
	4 2 Staffing	
	• Introduction to HR Planning	
	Recruitment Procedure	
	4 3 Personnel – Training & Develonment	
1		

WBSCTE SYLLABUS DIPLOMA IN ELECTRICAL ENGINEERING (INDUTRIAL CONTROL) Unit **Contents (Theory)** Hrs./Unit Induction . **Skill Enhancement** 4.4 Grievance handling 4.5 Leadership & Motivation Maslow's Theory of Motivation 4.6 Safety Management Causes of accident • Safety precautions 4.7 Introduction to – **Factory Act** ESI Act Workmen Compensation Act • Industrial Dispute Act • **GROUP - C** 9 5 Financial Management 5.1. Financial Management- Objectives & Functions 5.2. Capital Generation & Management **Types of Capitals** • Sources of raising Capital 5.3. Budgets and accounts **Types of Budgets** • Production Budget (including Variance Report) • Labour Budget Different financial ratios, Introduction to Profit & Loss Account (only concepts); Balance Sheet 5.4 Introduction to-Excise Tax. Service Tax Income Tax VAT **Custom Duty** 6 9 **Materials Management** 6.1. Inventory Management (No Numerical) Meaning & Objectives • 6.2 ABC Analysis 6.3 Economic Order Quantity(EOQ) 6.4 Stores function, Stores system, BIN card, Materials issue request(MIR), Pricing of materials Introduction & Graphical Representation 6.4 Purchase Procedure **Objects of Purchasing** Functions of Purchase Dept. Steps in Purchasing 6.5 Modern Techniques of Material Management Introductory treatment to IIT / SAP / ERP 7 Safety Engineering 5 7.1 Accidents-causes of accidents, Welfare measures. 7.2 Need for safety 7.3 Organization for safety 7.4 Safety committee 7.5 Safety programmes

Text Books:

7.6 Safety measures

Name of Authors	Title of the Book	Name of the Publisher
Dr. O.P. Khanna	Industrial Engg & Management	Dhanpat Rai & sons New Delhi
		D 10

WBSCTE SYLLABUS	DIPLOMA IN ELECTRICAL EN	GINEERING (INDUTRIAL CONTROL)
V.Arun Viswanath, Anoop.	Industrial Engineering and Management	SCITECh Publication(s) Pvt.
S. Nair, S.L.Sabu		Ltd
A. Bhat & A. Kumar	Management Principles, Processes & Practices	Oxford University Press
Dr. S.C. Saksena	Business Administration & Management	Sahitya Bhavan Agra
W.H. Newman, E. Kirby	The process of Management	Prentice- Hall
Warren, Andrew R. McGill		
Rustom S. Davar	Industrial Management	Khanna Publication
Banga & Sharma	Industrial Organisation & Management	Khanna Publication
Jhamb & Bokil	Industrial Management	Everest Publication , Pune

Suggested List of Assignments/Tutorial :-

- 1. Preparation of financial budget of any organization.
- 2. Preparation of chart for fire safety.
- 3. Preparation of chart for personal, Tools & Equipments and products safety.
- 4. Preparation of chart to avoid accident.
- 5. Preparation of chart to show the different financial ratios.
- 6. Preparation of chart to show the different types of organization.

EXAMINATION SCHEME (THEORITICAL)

	ONE OR TWO SENTENCE ANSWER QUESTIONS		NSWER		SUBJECTIVE (QUESTIONS			
GROUP	UNIT	TO BE SET	TO BE ANSWERED	MARKS PER QUESTIO N	TOTAL MARKS	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS
А	1, 2	7	TWENTY	ONE	1820 - 20	THREE	FIVE, TAKING AT LEAST ONE	TEN	10VE - E0
В	3, 4	7	IVENTI	UNE	1X20 = 20	THREE	FROM EACH GROUP	I EIN	1072 = 20
С	5, 6, 7	11				FOUR			

/BSCTE SYLLABUS DIPLOMA IN ELECTRICAL ENGINEERING (INDUTRIAL CONTROL)					
Name of the Course: DIPLOMA IN ELECTRICAL ENGINEERING (INDUSTRIAL CONTROL)					
Name of the subject: Control of Electri	cal Machines (Elective)				
Subject Code : <i>EEIC/S6/CEM (EL)</i>	Semester: Sixth				
Duration : One Semester	Maximum Marks : 150				
Teaching scheme :	Examination scheme :				
Theory: 3 Hrs./ Week	Mid Semester Exam: 20 Marks				
Practical: 2 Hrs./Week	Assignment & Quiz: 10 Marks				
	End Semester Exam: 70 Marks				
	Practical: 50 Marks				
Credit: 04					

Aim:	
SI. No.	
1.	This subject is the combination of Electrical machine and Control system. Most of the motor control circuits are based on these systems.
2.	Understanding of the subject will provide skill to the students of different motor control systems and their applications in industry.
Objecti	ive:
SI. No.	Student will be able to:
1.	Interpret the basics of the motor control systems.
2.	Demonstrate the solid state control of motor.
3.	Describe the implementation of PLC in control systems.
Pre-Re	quisite:
1.	Knowledge of Electrical machine.
2.	Knowledge of Control system.

	Contents (Theory):	Hrs./ Unit	Marks
Unit: 1 1. Control Syste	ms :	08	12
1.1 Concept of	Automatic control system.		
1.2 Illustration	of Open loop and closed loop control system.		
1.3 Need for fee	ed back system.		
1.4 Basic eleme	ents of a servo mechanism.		
1.5 Examples o	f Automatic control system.		
1.6 Introductio	n to solid state control.		
1.7 Advantages	of solid state control of machines.		
Unit: 2 2. Magnetic Cor	itrol Systems:	10	14
2.1 Operation &	Applications of Contactor control circuit		
components -			
(i) Switches - P	ush button type, Selector type, Limit switch.		
Pressure, Float	type, Proximity, Thermostat (Temperature)		
(ii) Fuses - Kit-l	kat type, Cartridge type. HRC type		
(iii) MCCB, MCB			
(iv) Electromag	netic Contactor.		
(v) Overload re	lays - Voltage operated, Current operated, Thermal overload		
relay, Magnetic	overload relay,		
(vi) Time delay	relays (OFF delay, ON delay).		
(vii)Timer - Pnu	umatic type, Electronic type.		
(viii)Relays -Fre	equency response relay, Latching relay, Phase failure relay		
(single phase p	reventer), Solid state relay.		
(ix) Solenoi	d valve.		
2.2 Principles o	f design of motor control circuits and power circuits.		

DIPLOMA IN ELECTRICAL ENGINEERING (INDUTRIAL CONTROL)

	Contents (Theory):	Hrs./ Unit	Marks
Unit: 3	 3. MAGNETIC CONTROL OF DC MOTOR: 3.1 Operation of Control circuit & Power circuits of - (i) Jogging operation of DC motor in one and two directions. (ii) Starters of DC motor - Current limit accleration starter, Series relay & Counter emf starter, Definite time accleration starter. (iii) Braking of DC motor - Dynamic braking , Reversing & plugging. (iv) Protection of DC motor - Field failure protection circuit, Field accleration protection circuit, Field deceleration circuit. 3.2 Solid State Control of DC Motor: (i) Speed control of DC motor using chopper circuit. 	10	14
	(ii) Speed control of DC shunt motor using thyristor- Half-wave drives & Full-wave drives.		
Unit: 4	 4. MAGNETIC CONTROL OF AC MOTOR: 4.1 Operation of Control circuit & Power circuits of - (i) Reversing the direction of rotation of induction motor with Interlocking systems (ii) Simple ON-OFF motor control circuit, (iii) Automatic Sequencial control of motor. (iv) DOL starter, (v) Automatic Auto-transformer starter, (vi) Automatic Star-Delta starter. (vii) Starter for multispeed operation of motor. (viii) Plugging & Dynamic braking of AC motor. (ix) Protection of AC motor - Overload, Short circuit and Over temperature protection of high rating motors. 4.2 Solid State Control of AC Motor: (i) Speed control of slip-ring induction motor using variable rotor circuit resistance. (iii) Speed control of single phase induction motor using thyristor. (iv) Speed control of synchronous motor. 	10	14
Unit: 5	 5. Use of Programmable Logic Control (PLC): 5.1 Introduction & Advantages of PLC. 5.2 Function of each part of PLC. 5.3 Hardware of PLC. 5.4 Concept of Ladder diagram in PLC programming. 5.5 Ladder logic diagram for - (i) DOL starter of Induction motor, (ii) Automatic Star-Delta starter of Induction motor, (iii) Sequential operation of three motors with a time gap, (iv)Fluid filling operation. 5.6 Use of PLC in closed loop control, Proportional control, Integral control, Derivative control & PID control with illustration. 5.7 DC motor speed control using PLC programming. 	10	16
	TOTAL	48	70

Practical: Skills to be developed:

Intellectual Skills:

To select appropriate component and equipment.
 Apply different designing skills.

Motor Skills:

1. Ability to draw the control & power circuit diagrams.

2. Ability to interpret the circuits and waveforms.

List of Practical: (At least Eight experiments are to be performed)

1. To study control components - Electromagnetic contactor, Thermal overload relay, Timer (OFF delay, On delay), Push button Switches, Solenoid valve, MCB.

2. To make & test the control and power circuit for Jogging operation, forward & reverse rotation of Sq.cage induction motor using contactor control.

3. To make & test the control and power circuit for fully-automatic star-delta starter operation of cage induction motor using contactor control.

4. To make & test the control circuit for dynamic braking operation of induction motor using contactor control.

5. To make & test the working of single phase preventer using contactor control.

6. To control speed of DC shunt motor using SCR drive.

7. To make & test the control circuit operation of DOL starter of induction motor using PLC.

8. To make & test the control circuit operation of automatic star-delta starter of induction motor using PLC.

9. To study the Speed control of DC shunt motor with PID control using PLC.

10. To make & test the control circuit operation of three sequential motor operations using PLC.

List of Text Books:

LISC 01	I CAL DUURS.		
SI. No.	Name of Author	Title of the Books	Name of Publisher
1.	S.K.Bhattacharya	Industrial Electronics and Control	T.M.H.
2.	Dr. S.K.Sen	Electrical Machine	Khanna Publisher
3.	V. Subrahmanyam	Electric Drives - concepts & applications	T.M.Hill
4	Petruzella	Programmable Logic Controller	T.M.Hill

EXAMINATION SCHEME (THEORITICAL)

1	GROUP	UNIT	ONE OR TWO SENTENCE ANSWER QUESTIONS			SUBJECTIVE QUESTIONS				
			TO BE SET	TO BE ANSWERE D	MARKS PER QUESTION	TOTAL MARK S	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS
	А	1, 2,3	12	TWENTY	ONE	1X20 = 20	FIVE	FIVE, TAKING AT LEAST TWO	TEN	10X5
	В	4,5	11				FOUR	FROM EACH GROUP		= 50

Note: Paper-setter should take into account the marks which have been allotted in each unit and set the paper accordingly so that all units get the importance as allotted.

EXAMINATION SCHEME (SESSIONAL)

- 1. Continuous **Internal Assessment** of 25 marks is to be carried out by the teachers throughout the Sixth Semester. Distribution of marks: Performance of Job 15. Laboratoiy Notebook 10.
- 2. **External Assessment** of 25 marks shall be held at the end of the Sixth Semester on the entire Sessional syllabus. One Experiment per student from any one of the above is to be performed. Experiment is to be set by lottery system. Distribution of marks: On spot job 15, Viva-voce 10.

WBSCTE SYLLABUS DIPLOMA IN ELECTRICAL ENGINEERING (INDUTRIAL CONTROL) Name of the Course: DIPLOMA IN ELECTRICAL ENGINEERING (INDUSTRIAL CONTROL) Subject : **INDUSTRIAL AUTOMATION (ELECTIVE)** Course Code: EEIC/S6/IA(EL) Semester: SIXTH Duration: ONE SEMESTER Maximum Marks: 150 **Teaching Scheme Examination Scheme** Mid Semester Exam.: 20 Marks Theory : 3 hrs./week Tutorial: --hrs./week Attendance, Assignment & interaction: 10 Marks Practical: 2 hrs./week End Semester Exam.: 70 Marks Credit: 4 Practical: 50 Marks

Aim:

The contents aim to develop the knowledge of the student in the field of automation in industries. This will be comprising knowledge of PLC, DCS and SCADA Systems. They will also get familiar with different industrial standard protocols.

Objective:

Sl. No.	The students will be able to:
1.	Know what automation is and what are the tools used in achieving automation.
2.	Program PLC.
3.	Know about the function of DCS, SCADA.
4.	Get acquainted with different standard protocols used in industries.

Pre-requisite:

Sl. No.	
1.	Idea on basic control system, basic electronics, digital electronics.
2.	Basic Concept in programming

Theory:

Unit	Contents	Hours	Marks
01	Control Systems and Automation Strategy: Evolution of instrumentation and	6	8
	control. Role of automation in industries, Benefits of automation. Introduction to		
	automation tools PLC. DCS. SCADA, Hybrid DCS/PLC, Automation strategy		
	evolution. Control system audit, performance criteria, Safety Systems.		
02	Programmable logic controllers (PLC): Introduction, architecture, definition of	10	16
	discrete state process control, PLC Vs PC. PLC Vs DCS, relay diagram, ladder		
	diagram, ladder diagram examples, relay sequencers, timers/counters, PLC		
	design. Study of at least one industrial PLC.		
03	Advance Applications of PLC and SCADA: PLC programming methods as per IEC	8	11
	61131, PLC applications for batch process using SFC, Analog Control using PLC.		
	PLC interface to SCADA/DCS using communication links (RS232. RS485) and		
	protocols (Modbus ASCII RTU)	-	
04	Instrumentation Standard Protocols: HART Protocol introduction, frame	8	11
	structure, programming, implementation examples. Benefits. Advantages and		
	Limitations. Foundation Fieldbus HI introduction, structure, programming, FDS		
	configuration, implementation examples. Benefits, Advantages and Limitations,		
	Comparison with other fieldbus standards including Device net. Profibus.		
05	Controlnet. CAN. Industrial Etnernet etc.	10	1.0
05	Distributed Control Systems: DCS introduction, functions, advantages and	10	16
	Initiations. DCS as an automation tool to support Enterprise Resources Planning,		
	programming functions including database management reporting alarm		
	programming, functions including utdatase management, reporting, alarm		
	functions wiz Advance Process Control Batch application Historical Data		
	Management OPC support Security and Access Control etc		
06	Automation for following industries - Power Water and Waste Water Treatment	6	8
00	Food and Reverages Cement Pharmaceuticals Automobile and Ruilding	U	0
	Automation		
	TOTAL :	48	70

Conten	Contents (Practical)				
SI. No.	Skills to be developed				
1.	Intellectual Skills: i) Analytical Skill				
	ii) Identification skill				
2.	Motor Skills: i) Operate different software used in industries used in automation,				
	ii) Problem solving skill.				
	iii) Proper Handling of PLC/DCS/SCADA system.				

PRACTICAL:

01	Study of Various types of PLCs
02	Case study of Industrial PLC/PLC trainer.
03	Ladder diagram implementation of basic logic gates.
04	Ladder diagram implementation using timers.
05	Ladder diagram implementation using counters.
06	Ladder diagram implementation using relay sequencer.
07	Ladder diagram implementation for any one automation system.
80	Experiment on SCADA System.
09	Case study of Industrial DCS/DCS trainer.
10	Experiment on DCS Trainer for batch application, database management, and communication.
11	Interface of DCS with SCADA/PLC, using protocol/field bus.

BOOKS

Sl. No.	Title	Author	Publication
01	Distributed Computer Control for Industrial	Poppovik Bhatkar	Dekkar Publications
	Automation		
02	Programmable Logic Controllers: Principles	Webb and Reis	РНІ
	and Applications		
03	Computer Aided Process Control	S.K. Singh	РНІ
04	Introduction to Programmable Logic	Garry Dunning	Thomson Learning
	Controllers		
05	The Management of Control System:	N.E.Battikha	ISA
	Justification and Technical Auditing		
06	Computer Based Process Control	Krishna Kant	PHI

EXAMINATION SCHEME (THEORITICAL)

	UNIT	ONE OR TWO SENTENCE ANSWER QUESTIONS				SUBJECTIVE QUESTIONS			
GROUP		TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS
А	1, 2, 3	12	TATENTY	ONE	1 X 20 - 20	FOUR	FIVE, TAKING AT	10 (TEN)	10 Y F - F0
В	4, 5, 6	11	TWENTY	UNE	1 X 20 = 20	FIVE	EACH GROUP	10 (IEN)	10 X 3 = 50

EXAMINATION SCHEME (SESSIONAL)

1.	Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the
	Fifth Semester. Distribution of marks: Performance of Job - 15, Notebook - 10.
2.	External Assessment of 25 marks shall be held at the end of the Fifth Semester on the entire syllabus.
	One Experiment per student from any one of the above is to be performed. Experiment is to be set by
	lottery system. Distribution of marks: On spot job - 15, Viva-voce - 10.

Name of the Course: **DIPLOMA IN ELECTRICAL ENGINEERING (INDUSTRIAL CONTROL)** Subject : **Computer Hardware and Networking (Elective)**

Subject: computer nuruwure und Networking (<i>ciecuvej</i>	
Course Code: EEIC/S6/CHN(EL)	Semester: <i>SIXTH</i>	
Duration: ONE SEMESTER	Maximum Marks: 150	
Teaching Scheme	Examination Scheme	
Theory : 3 hrs./week	Mid Semester Exam.: 20	
Tutorial: hrs./week	Attendance, Assignment & interaction: 10	
Practical: 2 hrs./week	End Semester Exam.: 70	
Credit: 4	Practical: 50 Marks	

Aim:

SI. No.	
1.	To Identify various components of PC
2.	To study construction, working and function of different peripheral devices.
3.	To study Networking basic and know how to set up Local Area Network
Objectiv	re:
SI. No.	
1.	 Identify various components of PC.
2.	 Describe the construction, working and function of different peripheral devices.
3.	 Read and interpret documentation .
4.	 Assemble the PC and connect the modules.
5.	 Install system software, application software and drivers.
6.	• Set up Local Area Network.
Pre-Req	uisite:
SI. No.	
1.	Digital Electronics
2.	

Conten	ts (Theory)	Hrs./Unit	Marks
Unit: 1	Introduction:	02	04
	PC system units - Front Panel / Rear side connectors, switches and		
	indicators -specification parameters - Lap top PCs - Palm top PCs.		
Unit: 2	Inside PC	12	16
	2.1 Inside PC - functional blocks of mother board - CPU, RAM, BIOS,		
	Cache RAM, BUS extension slots, on-board I/O and IDE connectors PCI,		
	AGP & PCI express.		
	2.2 BIOS, services, organization and interaction.		
	2.3 CMOS, CMOS setup utilities, CMOS setup program.		
	2.4 Motherboard types.		
	2.5 Processors - CISC and RISC.		
	2.6 Features of Pentium 4 processor, Pentium Celeron processor,		
	CYRIX series processors, AMD series processors.		
	2.7 Chipsets - features of Intel 854, 915 series chipset motherboards		
	2.8 Bus standard and Bus architecture		
	2.9 Power supplies -SMPS for Computers, Power requirements in PCs.		
Unit: 3	On board memory, I/O interface and storage device	05	8
	3.1 PC's memory organization		
	3.2 ROM, RAM, distinguish between static and dynamic RAM		
	3.3 DRAM, Synchronous DRAM, Cache Memory, Extended/		
	Expanded/Virtual memory.		
	3.4 I/O port - Serial port, Parallel port, USB port		
	3.5 Hard disk drives : Functional block diagram, SATA technology,		
	3.6 CD-ROM drive - Principle of operation, block diagram.		
	3.7 DVD technology - DVD disks DVD drive block diagram		
		I	

WBSCTE SYLLABUS

Content	Contents (Theory)			
	3.8 Pen drives.			
Unit: 4	Input and Output Devices	05	7	
0	4.1 Keyboard - types, operation, and keyboard signals, interface logic.			
	keyboard functions.			
	4.2 Mouse - principle of operation, mouse signals, optical mouse,			
	mouse installation.			
	4.3 Scanner - principle of operation, types.			
	4.4 Digital display technology (thin displays) - Liquid crystal displays,			
	Plasma displays, TFT monitors.			
	4.5 Modem: Introduction - functional block of modem - working			
	principle - types - installation.			
	4.6 Dot matrix printer - principle of operation.			
	4.7 LASER printer - principle of operation			
	4.8 Ink-jet printer- principle of operation,			
	4.9 Plotter - types, functional block diagram.			
Unit: 5	Computer Network Basics:	12	16	
	Introduction - OSI layer model - Function of each layer network types -			
	LAN- WAN- MAN - internet - intranet - extranet - Blue tooth Technology.			
	TCP/IP: Introduction, History of TCP/IP, Function of each layer of TCP/IP,			
	User Datagram Protocol, Comparison of OSI and TCP/IP.			
	IP Addressing, IP address classes, Subnet Addressing, Domain Name System,			
	Email - SMTP, POP,IMAP; FTP, FITTP, Overview of IP version 6.			
Unit: 6	Network Media& Hardware	08	12	
	[Twisted wire - Coaxial cable - fiber optic cable, VSAT			
	Local Area Network:			
	Introduction to LANs, Features of LANs, Components of LANs, Usage of			
	LANS, LAN topologies - star - ring - mesh - bus - Client/Server - peer to			
	peer. IEEE 802 standards, Ethernet, LAN interconnecting devices: Flubs,			
	Switches, Bridges, Routers, Gateways.	0.4		
Unit: 7	Cryptography : Encryption, Decryption, Asymmetric Key and Symmetric	04	1	
	Key Cryptography, Digital Signature.			
	TOTAL	48	70	

Content	Contents (Practical)					
SI. No.	Skills to be developed					
1.	Intellectual Skills: i) Identify various components of Computer					
	ii) Able to prepare a block diagram to correlate all the components based on					
	their functions					
2.	Motor Skills: i) Able to use the various tools efficiently					
	ii) Able to set Local Area Network.					

List of Laboratory Experiments:

SI. No.	Laboratory Experiments
1.	Connecting & disconnecting computer peripherals and components & driver installation (For
	example Printer/Modem/DVD/Scanner etc.)
2.	To carry out Hard disk partitioning and formatting.
3.	To install operating System like Windows 7 / Linux (Ubuntu)
4.	To change the Standard settings and advanced settings (BIOS and Chipset features) of CMOS set up Program.
5.	To install the Network Interface Card and Familiarize with 0 Networking cables (CAT5, UTP) o Connectors (RJ45, T-connector) o Hubs, Switches

6.	To carry out Straight Through and Cross Over Cable	e connection with RJ 4	45 and CAT 5 cable
7.	To set up a Local area Network with 5 nos. of comp	uters.	

7. To set up a Local area Network with 5 8. To share Printer, Folder and Drives.

Text Books:			
Name of Authors	Title of the Book	Edition	Name of the Publisher
Vikas Gupta	Hardware and Networking Course Kit		Dreamtech Press
Steve Rackley	Networking in easy steps		Dreamtech Press
Behrouz A. Forouzen	Data communication and Networking		Tata Me. Graw-Hill Publishing Co. Ltd.
D Bala Subramanian	Computer Installation and Servicing		TMH, New Delhi
Mike Meyers, scott Jernigan	Managing and troubleshooting PCs		TMH, New Delhi
Bhushan Trivedi	Computer Network		Oxford University Press

EXAMINATION SCHEME (THEORITICAL)

		ONE	ONE OR TWO SENTENCE ANSWER QUESTIONS				SUBJECTIVE (FIVE QUESTIONS			
GROUP	UNIT	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS		
А	1, 2, 3,4	12			1820	FIVE	FIVE, TAKING		1075		
В	5,6,7	11	TWENTY	ONE	= 20	FOUR	FROM EACH GROUP	TEN	= 50		

EXAMINATION SCHEME (SESSIONAL)

- 1. Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the Sixth Semester. Distribution of marks: Performance of Job 15, Laboratory Notebook 10.
- 2. External Assessment of 25 marks shall be held at the end of the Sixth Semester on the entire Sessional syllabus. One Experiment per student from any one of the above is to be performed. Experiment is to be set by lottery system. Distribution of marks: On spot job 15, Viva-voce 10.

WBSCTE SYLLABUS D	IPLOMA IN ELECTRICAL ENGINEERING (INDUTRIAL CONTROL)			
Name of the Course: DIPLOMA IN ELECTRICAL EN	NGINEERING (INDUSTRIAL CONTROL)			
Subject : Industrial Project				
Course Code: EEIC/S6/IP	Semester: <i>SIXTH</i>			
Duration: ONE SEMESTER	Maximum Marks: 100			
Teaching Scheme	Examination Scheme			
Theory : hrs./week	Mid Semester Exam.: NIL			
Tutorial: hrs./week	Attendance, Assignment & interaction: NIL			
Practical: 4 hrs./week	End Semester Exam.: NIL			
Credit: 2	Practical: 100 Marks			

Aim:

SI. No.	
1.	This subject is intended to teach students to understand facts, concepts and techniques of
	electrical equipments, its repairs, fault finding and testing, estimation of cost and procurement of
	material, fabrication and manufacturing of various items used in electrical field
2	This will help the students to acquire skills and attitudes so as to discharge the function of

2. This will help the students to acquire skills and attitudes so as to discharge the function of supervisor in industry and can start his own small-scale enterprise

Objective:

SI. No.	
1.	• Develop leadership qualities.
2.	 Analyze the different types of Case studies.
3.	Develop Innovative ideas.
4.	 Develop basic technical Skills by hands on experience.
5.	• Write project report.
6.	 Develop skills to use latest technology in Electrical field.

Pre-Requisite:

SI. No.	
1.	Knowledge of subjects up to 5 th Semester of Electrical Engineering
2.	

Contents

This subject is the continuation of the part of Industrial Project of subject **"INDUSTRIAL PROJECT AND ENTREPRENEURSHIP DEVELOPMENT**" studied in 5th Semester. Following activities related to project

are required to be dealt with, during this semester.

- 1) Each project batch should carry out the actual Project works which have been approved in Fifth Semester.
- 2) At the end of this semester each project batch should prepare the detailed project report & submit the same to respective guide.

The lists of	pro	jects (are same	as in	5th	semester	which	are as	follows:

Group	Projects						
Ι	1. Design of Illumination Scheme (Up to 20 KW) for Hospital / Shopping Mall / Cinema						
	Theatre / Commercial Complex / Educational Institute / Industrial Complex.						
	2. Design of Rural Electrification Scheme for small Village, Colony.						
	3. Energy Conservation and Audit.						
	4. Substation Model (Scaled)						
	5. Wind Turbine Model (Scaled)						
	6. Pole Mounted Substation Model (Scaled)						
	7. Conduct load survey to ascertain the total load requirements of a locality/olytechnic.						
	8. Any other items as may be assigned by the teacher concerned.						
II	(1) Rewinding of Three Phase/Single Phase Induction Motor.						
	(2) Rewinding of Single Phase Transformer.						
	(3) Fabrication of Inverter up to 1000 VA.						

WBSCTE SYLLA	BUS DIPLOMA IN ELECTRICAL ENGINEERING (INDUTRIAL CONTROL)
Group	Projects
	(4) Fabrication of Battery Charger.
	(5) Fabrication of Small Wind Energy System for Battery Charging.
	(6) Fabrication of Solar Panel System for Battery Charging.
(7) Fabrication of Water level controller.	
	(8) Fabrication of DC motor speed control circuit by SCRs.
	(9) Microprocessor/ Micro controller Based Projects.
	(10) Simulation Projects using Matlab.
	(11) Any other items as may be assigned by the teacher concerned.

Continuous Internal Assessment of 50 marks is to be carried out by the teachers throughout the semesters. **Distribution of marks: Project Work – 25, Project Report Presentation – 15, Viva-voce – 10.**

External assessment of 50 marks shall be held at the end of the Sixth Semester on the entire Project Work. The external examiner is to be from Industry / Engineering College / University / Government Organization. **Distribution of marks:** Project Work - 25, Project Report Presentation – 15, Viva-voce – 10.

WBSCTE SYLLABUS	DIPLOMA IN ELECTRICAL ENGINEERING (INDUTRIAL CONTROL)	
Name of the Course: DIPLOMA IN ELECTRICAL ENGINEERING (INDUSTRIAL CONTROL)		
Subject : Professional Practices IV		
Course Code: EEICS/S6/PF IV	Semester: <i>SIXTH</i>	
Duration: ONE SEMESTER	Maximum Marks: <i>50</i>	
Teaching Scheme	Examination Scheme	
Theory : hrs./week	Mid Semester Exam.: NIL	
Tutorial: hrs./week	Attendance, Assignment & interaction: NIL	
Practical: 3 hrs./week	End Semester Exam.: NIL	
Credit: 2	Practical: 50 Marks	

Aim:

SI. No.	
1.	To acquire information from different sources
2.	To present a given topic in a seminar, discuss in a group discussion
3	To prepare report on industrial visit, expert lecture.

Objective:

SI. No.	The student will be able to
1.	Acquire information from different sources
2.	Prepare notes for given topic
3.	Present given topic in a seminar
4	Interact with peers to share thoughts
5	Prepare a report on industrial visit, expert lecture

Pre-Requisite:

SI. No.	
1.	Knowledge of studying 5 semesters in Diploma Engineering

Activities

Sr. No.		Activities	Hours
1.	Industri	ial / Field Visit:	12
	Structur	ed Field visits be arranged and report of the same should be submitted	
	by the in	dividual student, to form part of the term work.	
	Visits to	anv ONE from the list below (should not have completed in earlier	
	semeste	r):	
	i.	Multistoried building for power distribution	
	ii.	Any industry with process control and automation	
	iii.	District Industries Centre (to know administrative set up, activities,	
		various schemes etc)	
	iv.	Railway / metro railway signaling system	
	v.	Motor rewinding in a motor rewinding shop	
	vi.	Visit warehouse / Rail yard / port and observe Material Handling	
		Management & documentation.	
	vii.	A thermal / Hydel power generating station	
	viii.	A Wind mill and / or Hybrid power station of wind and solar	
	ix.	An electrical substation	
	Х.	A switchgear manufacturing / repair industry	
	xi.	Protection system in a large industry.	
	xii.	Visit to maintenance dept of a large industry.	
	xiii.	A large industry to study protection system	
	xiv.	Industry of power electronics devices	
	XV.	Transmission tower project area	
	xvi.	Any contemporary industry under MSME sector to understand detail of	
		operation and starting of a new venture.	
	xvii.	A large industry to study protection system	
	xviii.	Industry of power electronics devices	
	xix.	Transmission tower project area	

WBSCTE SY	ALLABUS DIPLOMA IN ELECTRICAL ENGINEERING (INDUTRIA	AL CONTROL)
Sr. No.	Activities	Hours
	xx. Any contemporary industry under MSME sector to understand detail of	
	operation and starting of a new venture.	
	xxi. Any other technical field area as may be found suitable alternative to	
	above list.	
2	Guest Lecture by professional / industrial expert:	12
	The guest lecture (s) any three of two hours duration each from the field	
	/industry experts, professionals or from experienced faculty members(from own	
	department or other departments) will be encouraged) are to be arranged from	
	the following or alike topics. A brief report to be submitted on the guest lecture	
	by each student as a part of term work.	
	Group A (at least one)	
	i. Career opportunities for upforna engineers	
	iii Challenges in industrial working environment for diploma engineers	
	iv Scope for diploma electrical engineers	
	w Working in shonfloor	
	vi Onnurtunities in the service sector	
	vii Any other tonic of relevance as may be deemed fit for fresh engineers	
	viii. as he starts his career in industry.	
	Group B (at least one)	
	i. Ecomentary air conditioning / reinigeration.	
	ii. Modern trends in AC machine	
	iv Biomedical instruments – working calibration atc	
	Automobile pollution norms of pollution control	
	vi Nanotechnology	
	vii Modern techniques in Power Generation	
	viii. New trends in nower electronics devices	
	ix. TOM	
	x. Recent modification in IE rules	
	xi. standardization / ISO certification	
	xii. Role of micro, small and mediun enterprise. In Indian economy.	
	xiii. Entrepreneurship development and oppurtunities	
	xiv. Interview techniques	
	xv. Any topic that could not be covered in earlier semesters and having	
	relevance to technical knowledge gathered in all semesters.	
3	Information search	12
	Information search can be done through manufacturers, catalogue, internet,	
	magazines, books etc and a report need to be submitted. Can be done in a group	
	of 2/3 students	
	Topic suggested (any two) Teachers may assign work on any other cross	
	alsciplinary subjects for enrichment of knowledge outside course work of	
	Liectrical discipline)	
	1. Blue tooth technology	
	2. At thick technology 3. Data warehousing	
	4 Cryntography	
	5 Digital signal processing	
	6 Bio-informatics	
	7. Magnetic levitation system	
	8. Recent development in electrically operated vehicles for mass transport	
	9. Comparative study of metro railway in Kolkata and Delhi	
	10. Alternative fuel and energy options	
	11. Comparison of transformer companies	
	12. Latest trends in classification of insulating materials	
	13. Design consideration for dry type transformers	
	14. State and national statistics of power generation	

WBSCTE SYLLABUS

Sr. No.	Activities	Hours
	15. Market survey of contactors, relays and their comparative analysis.	
	16. Market survey of any other electrical product which must include among	
	other things various manufacturers, cost, specification, application areas	
	etc.	
4	Group Discussion	14
	The students should discuss in a group of six to eight students. Each group to	
	perform any TWO group discussions. Topics and time duration of the group	
	discussion to be decided by concerned teacher. Concerned teacher may modulate	
	the discussion so as to make the discussion a fruitful one. At the end of each	
	discussion each group will write a brief report on the topic	
	as discussed in the group discussion.	
	Some of the suggested topics are –	
	i. Scope of outsourcing of electrical Engineering services.	
	ii. ii)Pollution Control	
	iii. Rain water harvesting	
	iv. Trends in energy conservation	
	v. Safety in day to day life	
	vi. Use of plastic carry bag (social & domestic Hazard)	
	vii. vii)Pollution control	
	viii. viii) Any other common topic related to electrical field as directed by	
	concerned teacher.	
5	Seminar / Poster presentation:	14
	Students should select a topic for seminar based on recent development in	
	Electrical Engineering fields, emerging technology etc. Concerned Teachers	
	will guide students in selecting topic.	

EXAMINATION SCHEME (SESSIONAL)

Continuous internal assessment of 50 marks is to be carried out by the teachers throughout the sixth semester. **Distribution of marks: Information search = 10, seminar = 10, Group discussion = 5, field visit = 10, guest lecture attendance and report = 15**

Name of the Course: DIPLOMA IN ELECTRICAL ENGINEERING (INDUSTRIAL CONTROL)		
Subject : <i>General Viva Voce</i>		
Course Code: EEIC/S6/GVV	Semester: <i>SIXTH</i>	
Duration: ONE SEMESTER	Maximum Marks: 100	
Teaching Scheme	Examination Scheme	
Theory : hrs./week	Mid Semester Exam.: NIL	
Tutorial: hrs./week	Attendance, Assignment & interaction: NIL	
Practical: hrs./week	End Semester Exam.: NIL	
Credit: 2	Practical: 100 Marks	

Aim:

SI. No.	
1.	It is required to revisit the contents of the departmental subjects learnt by the students up to
	sixth semester.
2.	As a diploma holder of Electrical Engineering, students should be able to co relate the various
	ideas and concepts learnt from various subjects throughout the course duration.
3.	Student should equip themselves to face various types of technical questions during various
	competitive examinations/ Interview Board.

Contents (Theory)

The syllabi of all the theoretical and sessional subjects taught in the three years of diploma education

EXAMINATION SCHEME (SESSIONAL)

The Final Viva-Voce Examination shall take place at the end of Sixth Semester. It is to be taken by Faculty members of the Institute concerned.